
COMBINED SYNTHESIS/VERIFICATION APPROACH
TO PROGRAMMABLE LOGIC CONTROL OF A

PRODUCTION LINE

Gašper Mušič ∗ Drago Matko ∗

∗ Faculty of Electrical Engineering, University of Ljubljana,
Slovenia

Abstract: The paper presents a methodology of designing control logic that is imple-
mented by industrial programmable logic controllers. A two stage approach is proposed.
In the first stage a set of interlock supervisors is designed based on discrete-event model of
the plant and a set of interlock specification models. Supervisory control theory is used to
test the controllability of the specifications and to derive a finite automaton representation
of the admissible behaviour of the system. In the second stage the model of admissible
behaviour is adopted as a plant model and used for the verification of the sequential
specification model in a form of a Petri net. The basic property of interest is the absence of
blocking. To study the interaction of the two models an extension of Place/Transition nets
is used, which includes external inputs and outputs, i.e., the Real-time Petri nets (RTPN).
A new kind of reachability analysis is applied, which considers all possible changes of
the controller input and output signals. This enables to verify the nonblocking operation
of the sequential controller. Copyright ©2005 IFAC

Keywords: Programmable logic controllers, Discrete-event systems, Supervisory control,
Petri-nets, Manufacturing systems.

1. INTRODUCTION

One of the most commonly used implementation
platforms in industrial automation consists of pro-
grammable logic controllers (PLCs) and related pro-
gramming software. Recently, much attention has
been given to formal methods and their application
in design and verification of PLC programs. This is
motivated by the growing complexity of the control
problems, demands for reduced development time and
need for reuse of existing software modules on one
hand, and on the other hand by the need for verifi-
cation and validation procedures related to applica-
tion of PLCs in safety-critical processes (Frey and
Litz, 2000).

The related approaches are either mainly dealing with
(automatic) synthesis of the PLC programs, or with
formalisation of the specifications and verification of
the program against the formal specification.

In the paper we study a combined approach, where
the supervisory control theory (Ramadge and Won-
ham, 1987) is used to synthesize the interlock part of
the control logic. The sequential part is then designed
by Petri nets (Murata, 1989), which are used in a
sense of formal specification that is verified against the
model derived during the interlock synthesis. The ba-
sic property of interest is the absence of blocking. The
motivation for the use of two modelling formalisms
is twofold: First, the supervisory control theory is
well suited for the interlock design. Interlocks may
be conveniently modelled modularly by simple state
machines, while complex sequential and partly con-
current behaviour is much more difficult to model this
way. Secondly, the Petri net framework provides an
intuitive way of modelling operation sequences, while
the Petri net based supervisory control methods are
less elaborated, especially in terms of event feedback,
and little synthesis tools are available. The combined
approach exploits the advantages of both frameworks.



2. COMBINED SYNTHESIS/VERIFICATION
APPROACH

To be able to present the proposed approach in a
formal way, some basic notions of the two paradigms
used, i.e. supervisory control theory and Petri nets, are
recalled first.

2.1 Automata and supervisory control

A deterministic generator is defined as a five-tuple
G = (X ,Σ,δ,x0,Xm) where X is a set of states, Σ
is a set of symbols associated with events, δ : X ×
Σ → X is a state transition function and is in general a
partial function on its domain, x0 is the initial state
and Xm is a set of marker states. A symbol σi ∈
Σ is generated at every transition. A finite set of
symbols is called a string. The language generated
by G (L(G)) is interpreted as a set of all finite event
sequences (strings) that may occur in the automaton.
The language marked by G is denoted by Lm(G) and
consists of event sequences that end in marker states.
Let Σ∗ denote a set of all finite strings of elements
of Σ including the empty string, and let st denote a
concatenation of strings s, t ∈ Σ∗. A prefix closure of a
language L ⊆ Σ∗ is then defined as L = {s ∈ Σ∗; ∃t ∈
Σ∗,st ∈ L}. The automaton is non-blocking, if it is
capable to reach a marker state from any reachable
state (Lm(G) = L(G)).

The supervisory control concept (Ramadge and Won-
ham, 1987) deals with restrictions on the behaviour of
a discrete event system imposed by an external con-
troller – a supervisor, acting by disabling events. The
set of events is partitioned into two disjoint subsets
– controllable and uncontrollable events: Σ = Σc ∪Σu,
Σc ∩Σu = /0. The uncontrollable events can not be
disabled. The supervisor is computed based on the
open-loop system model and a specification model.
The key issues are the concept of controllability and
the concept of supremal controllable sublanguage
(Cassandras and Lafortune, 1999; Wonham, 2003).

2.2 Petri nets and Real-time Petri nets

A Place/Transition Petri net (Murata, 1989; Cassan-
dras and Lafortune, 1999) can be described as a bi-
partite graph consisting of two types of nodes, places
and transitions. Nodes are interconnected by directed
arcs. State of the system is denoted by distribution
of tokens (called marking) over the places. For the
purpose of simulation and possible implementation by
industrial controllers, the input/output interpretation
can be added. One of such extensions is a class of
Petri nets called Real-Time Petri Nets (RTPN) (Zhou
and Twiss, 1998). Formally, a RTPN is defined as
an eight tuple RT PN = (P,T, I,O,m0,D,Y,Z) where
P = {p1, p2, . . . , pk},k > 0 is a finite set of places;
T = {t1, t2, . . . , tl}, l > 0 is a finite set of transitions
(with P∪ T 6= /0 and P∩ T = /0); I : P× T → N is a

function that specifies weights of arcs directed from
places to transitions; O : P×T → N is a function that
specifies weights of arcs directed from transitions to
places; m : P → {0,1,2, . . .} is a marking, m0 is the
initial marking. D : T → R + is a firing time-delay
function; Y : T → B is an input signal function, where
B is the set of Boolean expressions on input signals;
Z : P→ 2A×{0,1} is a physical output function, where A
is the set of output signals 1 . In the following we will
only deal with safe RTPN, i.e. m(p) ≤ 1,∀p ∈ P. The
output function of a place sets the related output sig-
nals to the specified values when the place is marked.

To enable a detailed analysis of blocking or non-
blocking properties of a RTPN that is executed under
a restriction of a discrete event supervisor we have to
precisely define the firing rule of a RTPN. A firing
rule defined in (Zhou and Twiss, 1998) is here adopted
with a slight modification.

In a standard Petri net theory a transition t ∈ T is
said to be enabled if m(p) ≥ I(p, t),∀p ∈ •t. Here
•t ⊆ P denotes the set of places which are inputs to
a transition t ∈ T . For a RTPN we adopt this definition
but we call such a transition a state enabled transition.
A set of state enabled transitions of a RTPN under
marking m is Te(m) := {t|t is state enabled under m}.

Let v : B → {0,1} denote an input state where v(b) is
the binary value corresponding to a state of the input
signal b ∈ B. Similarly, u : A →{0,1} denotes an out-
put state. Next we define that a transition t ∈ T is input
enabled under an input state v when eval(Y (t),v) =
1. Function eval(e,v) denotes an evaluation of the
Boolean expression e ∈ B by the given input state v. A
set of input enabled transitions of a RTPN under input
state v is Ti(v) := {t|t is input enabled under v}.

We also define that a transition is output enabled when
all the preceding control actions have actually been
executed. A transition t ∈ T is output enabled under an
output state u when Z(p) = {(a1, i1), . . . ,(an, in)} ⇒
u(a j) = i j,∀(a j, i j) ∈ Z(p),∀p ∈ •t. A set of output
enabled transitions of a RTPN under output state u is
To(u) := {t|t is output enabled under u}.

The firing rule of a RTPN can now be defined as
follows: (i) a transition t ∈ T is enabled if it is state
enabled, input enabled and output enabled, i.e., t ∈
Te ∩Ti ∩To; (ii) an enabled transition may or may not
fire, which depends on the firing time-delay function
associated with it: a transition with zero time delay
fires immediately when enabled, a transition with non-
zero time delay fires immediately after delay D(t)
expires (the corresponding timer starts when transition
is enabled); (iii) a firing of a transition is immediate
and removes a token from each of the input places of
the transition and adds a token to each of the output
places of the transition. We assume that only a single
transition of a PN fires at a time.

1 This definition of the output function is slightly changed with
respect to (Zhou and Twiss, 1998) and (Mušič and Matko, 2003).



Given a marking m, a marking m′ is said to be immedi-
ately reachable (m′ ∈ R1(m)) if there exists a transition
t such that t is state enabled under m and its firing
results in m′. A marking mk is said to be reachable
from a marking m0 (mk ∈ R∞(m0)) if there exists a
sequence < m0m1 . . .mk > such that mi ∈R1(mi−1) for
0 < i ≤ k. The notion od reachability can be extended
by considering input and output signals of a RTPN.
Given a marking m, input state v, and output state u, m′

is said to be immediately reachable under I/O state v, u
if there exists a transition t such that t is state enabled,
input enabled, and output enabled under m, v, and u,
respectively, and its firing results in the marking m′.

2.3 Events and I/O signals

The feasible set of input/output (I/O) signal patterns is
defined by the supervisor S and is implicitly given by
the discrete event model of the supervised plant, Ha =
(X ,Σ,δ,x0,Xm), which is derived by the supervisory
control synthesis procedure. As explained in (Mušič
and Matko, 2003) we do not consider blocking at this
point therefore Xm = X . Language L(Ha) = La gener-
ated by Ha contains all admissible event sequences.

An event σ ∈ Σ may be regarded either as an external
event observed through the change in the state of the
corresponding I/O signal or may be actively triggered
by the controller. In any case, a change of the input or
output state is associated by every event σ ∈ Σ. This
will be denoted by v′ = δv(v,σ) and u′ = δu(u,σ).
The sets of output and input states are denoted as
U := {u|A →{0,1}} and V := {v|B →{0,1}}. Next
we define a set of total states W := {w|w = (x,u,v)}.

Considering event sequences that are generated by the
model of the admissible behaviour Ha we construct
a new total state automaton Hw = (W,Σ,ξ,w0,Wm),
where W ⊆ X ×U ×V as defined above, Σ is the set
of events composing the admissible behaviour, and ξ
is the new state transition function defined as follows:

ξ(w,σ) =

{

(δ(x,σ),u′,v′) if δ(x,σ) defined
undefined if δ(x,σ) undefined (1)

For convenience, ξ is extended from domain W ×Σ to
W ×Σ∗ in the usual way. Initial state w0 is (x0,u0,v0)
and all states are marked, Wm = W . We note that
L(Hw) = L(Ha) = La, which is evident from (1).

We assume the initial state w0 of Hw when a cor-
responding RTPN is marked by the initial marking
m0. The changes of the input/output signal state are
driven by the evolution of the two models, the total
state automaton model of admissible behaviour and
the RTPN model of operational sequences.

Definition 1. A RTPN is deadlock-free under discrete
event supervision when for every reachable marking
m ∈ R∞(m0,w0) there exists a marking m′ that is
immediately reachable from m, i.e., m′ ∈ R1(m,w)
where w = ξ(w0,s);s ∈ La.

Here R1(m,w) denotes the set of immediately reach-
able states of the RTPN under marking m and I/O state
v,u, where w = (x,u,v). Similarly R∞(m0,w0) denotes
the total reachable set of the RTPN.

2.4 IO-reachability graph

To be able to analyse the existence or absence of dead-
lock in the RTPN under discrete event supervision we
propose a new kind of reachability graph that enumer-
ates all possible event and transition sequences.

Nodes of the graph are pairs (m,w), where m is a
marking of the RTPN while w is the state of the
automaton Hw. We start the construction in the initial
state (m0,w0), where w0 = (x0,u0,v0). We then search
for a set of feasible events. This is a subset of feasible
events Γ(x0) of the automaton Ha. More precisely, the
set is composed of two subsets. One is the set of all
events feasible at x0 and not generated by the RTPN.
Second is the set of events generated by actions of the
marked places of the RTPN and defined by the output
function Z, which are also feasible at x0.

Let ΣCT RL denote a set of events triggered by RTPN,
and ΣSP a set of events that are not generated by the
RTPN (ΣSP = Σ− ΣCT RL). Let ΣA(m) denote the set
of events generated by actions of the marked places of
the RTPN. The set of feasible events ΣF at Ha in the
state x and RTPN marked by m is then given by

ΣF(x,m) = Γ(x)∩ (ΣSP ∪ΣA(m)) (2)

Then a node (m0,wi) where wi = ξ(w0,σi) is added for
∀σi ∈ ΣF(x0,m0) and the arc from (m0,w0) to (m0,wi)
is labelled σi.

Next the set of immediately reachable markings
R1(m0,w0) is determined. Then for every correspond-
ing marking mi ∈ R1(m0,w0) a node (mi,w0) is added
and the arc from (m0,w0) to (mi,w0) is labelled ti
where ti is the transition leading from m0 to mi. In case
of conflicting transitions, all possible firing sequences
are enumerated as in standard reachability analysis.

The procedure is repeated for every added node, and
duplicate nodes of the graph are merged. The proce-
dure stops when there are no new nodes or all new
nodes are duplicate nodes.

In the described way a new kind of reachability graph
is derived. A set of nodes is associated with every
reachable marking and the transitions between the
nodes are of two types: (i) transitions of a RTPN
connect nodes associated with distinct markings, (ii)
transitions related to events in a model of admissible
behaviour connect nodes associated with the same
marking. Since the derived graph includes input and
output events we call it the IO-reachability graph of a
RTPN under supervision. It must be noted that we only
consider ordering of events, while timing information
of a RTPN is omitted.



It is important to note that since the construction is
driven by sequential specification, only a small subset
of possible I/O combinations is actually enumerated.

Finally, the IO-reachability graph is used to analyse a
potential blocking of a controller. Here we apply the
following definition.

Definition 2. A control specification given as a RTPN
is nonblocking under supervision, when a correspond-
ing IO-reachability graph:

(i) contains all transitions of the RTPN, i.e. every
transition appears at least once as a label of an
edge in the graph and

(ii) may be interpreted as a nonblocking automaton,
given Xm = {x0}. In the interpretation of the
graph as an automaton, transitions of a RTPN are
considered as additional events in the system.

3. A CASE STUDY

To illustrate the proposed design concept we give a
simple but realistic example. We consider a part of a
laboratory scale modular production line composed of
five working stations controlled by five PLCs.

To simplify the presentation we focus on a part of
the line, i.e., the distribution station, consisting of a
pneumatic piston, that takes a workpiece from the
input buffer, and a manipulator that transports the
workpiece further. The setup is shown in Fig. 1.

D i s t r i b u t i o n T e s t i n g

D i s t r i b u t i o n   
p i s t o n M a n i p u l a t o r

I n p u t  
b u f f e r

Fig. 1. Part of the production line

The station is decomposed into three devices, besides
the distribution piston and arm of the manipulator
there is also a gripping device mounted on the arm.

3.1 The interlock part

In the interlock synthesis stage the three devices are
modelled as automata, which capture all possible in-
put/output signal changes. In general, there is no phys-
ical limitation on changes of the signals driving the
actuators of the process. When some limitations are
required this may be treated as a part of a control
specification and not a property of the process. On
the other hand, possible changes of the sensor signals
depend on the process state.

To illustrate the modelling concept, the model of the
distribution piston is shown in Fig. 2. The piston is
equipped by two limit switches, indicating backward

X 0

X 1

X 5

X 2 X 3

X 4

a f 1 a f 0

s b 1

s b 0

a f 1 a f 0

s f 0

s f 1

a f 1 a f 0

Fig. 2. Model of the pneumatic piston

(sb) and forward (s f ) position. The piston has a single
actuator (a f ), it moves forwards when a f = 1 and
backwards when a f = 0. The movement is limited to
the distance between the two limit switches. Events
are labelled by the label of the related sensor/actuator
followed by the suffix indicating the transition direc-
tion of the corresponding signal (1 - transition from 0
to 1; 0 - transition from 1 to 0). The initial state is des-
ignated by arrow pointing to the state while no marker
states are designated. Similar models of the arm and
the gripper may be found in (Mušič et al., 2002).

We define all events related to actuators (labels start-
ing with a) as controllable and all events related to
sensors (labels starting with s) as uncontrollable. For
the purpose of the supervisory control synthesis, the
complete model of the process may be obtained by
parallel composition of device models or alternatively,
the set of supervisors may be synthesized modularly.

Here the same interlock specifications as in (Mušič et
al., 2002) and (Mušič and Matko, 2003) are adopted.
The only differences are in the simplified represen-
tation, and we assume a different initial position of
the manipulator. The initial state of one automaton is
adjusted correspondingly. The main requirements im-
posed by the interlocks are prevention of simultaneous
activation of counteracting actuators and prevention of
mechanical collisions of parts of the production line.

Fig. 3 shows the device local interlock specifications.
Event labels are related to I/O signal labels given later
in Tabs. 1 and 2. The symbol Σ denotes a set of pos-
sible events in the supervised process. The specifica-
tions define rules about switching the actuator signals
that are independent of other devices. E.g., the upper
automaton defines that events ar1 and al1 may not
directly follow each other implying that arm left and
right movements may not be active in the same time.

a r 1 , a l 1

a r 0 , a l 0

S - { a r 1 , a l 1 }

S 0

S 1
S - { a g 1 0 , a g 0 0 , a g 1 1 , a g 0 1 }a g 1 1 , a g 0 1

a g 1 0 , a g 0 0
S 0

S - { a g 1 1 , a g 0 1 }

S - { a g 1 1 , a g 0 1 }
S 1

S - { a g 1 1 , a g 0 1 }a g 1 1

a g 0 1

S - { a r 0 , a l 0 , a r 1 , a l 1 }
S 1S 0

Fig. 3. Device local specifications



S 0 S 1

S 2

S 3

S 0 S 2

S 0 S 1

S - { a g 1 1 , a r 0 , s l 0 }S - { a r 1 }
a r 1

s l 1 s l 0

S - { a g 1 1 , s l 1 }

S - { s g 1 , a r 0 , a l 0 } S - { a g 0 1 , s g 0 ,a r 0 , a l 0 }
s g 1
s g 0

a r 0 ,a l 0 a r 1 ,a l 1
a r 0 ,a l 0 a r 1 ,a l 1

s g 1
s g 0

S - { s g 1 , a r 1 , a l 1 } S - { s g 0 , a r 1 , a l 1 }

S - { a g 0 0 , a g 1 0 ,    a l 1 , a r 1 }S - { a g 1 1 , a g 0 1 }
a g 1 1 , a g 0 1

a g 1 0 , a g 0 0

S 1

a r 0

S 0 S 1

S - { s l 1 }S - { s f 1 , s l 0 }

s l 1

s l 0

S 1
S - { s b 0 } S - { s b 1 , s l 1 }

s b 0

s b 1
S 0

Fig. 4. Device interaction specifications

The interlock specifications controlling the interaction
among devices are shown in Fig. 4. The first (top
left) specification defines that the grip may be initi-
ated only before the arm starts moving to the right or
after it comes back to the left (initial) position. The
second (top right) specification prevents the start of
the movement when vacuum is being switched on or
off. The third (bottom left) specification defines that
releasing the grip is not allowed during arm movement
except when the workpiece falls. Finally, the last two
specifications maintain the interlock between the ma-
nipulator and the distribution piston.

The controllability check shows all but the last two
specifications are controllable. For these two speci-
fications the supervisory control theory is applied to
calculate the maximally permissive supervisor, which
complies to the specifications without attempting to
block any of the uncontrollable events. This supervisor
together with previously defined local and interlock
supervisors results, when applied to the parallel com-
position of the device models, in a model of admis-
sible behaviour. For the given case, it consists of 133
states and 482 transitions. The model captures all pos-
sible input/output signal changes that comply with the
interlock specifications and are physically possible. It
therefore represents an open-loop process model from
the viewpoint of sequential part of the control logic.

Note that while a monolithic admissible behaviour
model is later used for verification of the sequential
logic, the interlock supervisors are implemented mod-
ularly. For the specifications that are found control-
lable, the related automata are directly implemented as
a set of function blocks. For the two specifications that
are not controllable, the related supervisor model is
derived by the supremal controllable sublanguage cal-
culation and the supervisor reduction technique (Vaz
and Wonham, 1986).

p
1

t
1

p
2

initial state

to initial
position

p
3

p
4

p
5

t
2

p
6

start
error t

3

t
4

acknowledge

timeout

t
5

t
6

push

t
7

forward

move
right

t
8

p
8

move left

left pos.

p
7

t
9

left and

workp.
ready.

t
10

hold

t 11

p
9

move
right

p
10

t
12

right

release grip

t
13

timeout
and new
workp.
ready

is held

t
14

timeout
and new workp.
not ready

left and

workp. not
ready

right and

workp.

ready
right and

workp. not
ready

t 15

t
16

t
17

t
19

timeout

and not right

t
18

cycle and

workp.

ready

timeout

timeout

timeout

timeout

Fig. 5. RTPN sequential specification

3.2 The sequential part

The first step in designing the sequential part is to
draw a Petri net that corresponds to desired operation
sequence. Such a net for our case is shown in Fig. 5.
After receiving a start signal and moving the arm to the
initial position (left - to clear the working area of the
neighbouring station), the controller checks another
start signal and the presence of a workpiece to start
the cyclic operation. Then the arm is moved away, the
workpiece is pushed from the buffer, the arm is moved
back, the gripper is activated and the workpiece is car-
ried right to the next working station where the gripper
is released. This concludes a normal working cycle.
Alternative paths are provided for cases when there is
no workpiece but the arm has to be moved to clear
the workspace and for the cases when the requested
operation does not terminate in the prescribed time. In
the later case an error state is entered, which can only
be left after acknowledgement of the error.

Next, input and output signals are adjoined with the
transitions and places of the Petri net. This is shown in
Tabs. 1 and 2. For the purpose of implementation on a
specific type of PLCs, the timeouts are not explicitly
assigned to places and transitions (the available type
of PLCs does not support timed actions in SFC, which
is chosen as a target language), i.e. D(ti) = 0,∀ti.
An additional input signal is assumed to signal the
expiration of every timeout and corresponding timers
are assumed to be programmed separately.

A RTPN defined this way is verified against the pre-
viously derived open-loop process model. The initial
states of the input signals that are not part of the admis-



Table 1. RTPN transition conditions

Y (t1)=start legend:
Y (t2)=sl ack - error acknowledgement
Y (t3)=d4s cycle - start of the cycle
Y (t4)=ack d05s - 0.5s timeout expired
Y (t5)=cycle (similarly: dns - ns timeout)
Y (t6)=sl AND sb sf/b - front/back pos. sensor
Y (t7)=sr AND si sg - workpiece is held
Y (t8)=sf si - workpiece present
Y (t9)=sl AND sf sl - left position sensor
Y (t10)=sr AND NOT si sr - right pos. sensor
Y (t11)=sg start - start of operation
Y (t12)=sr OR d6s OR NOT sg
Y (t13)=d05s AND si AND cycle
Y (t14)=d05s AND (NOT si OR NOT cycle)
Y (t15)=d6s
Y (t16)=d1s
Y (t17)=d4s
Y (t18)=d2s
Y (t19)=d05s AND NOT sr

Table 2. RTPN place actions

Z(p1)={(l_start, 1),(l_error, 0)}
Z(p2)={(l_start, 0),(al, 1)}
Z(p3)={(al, 0)}
Z(p4)={(l_error, 1),(al, 0),(ar, 0),(af, 0),(ag0, 0)}
Z(p5)={(ar, 1)} af - piston forward
Z(p6)={(ar, 0),(af, 1)} ag0 - release the grip
Z(p7)={(al, 1),(ar, 0),(ag0, 0)} ag1 - activate the gripper
Z(p8)={(al, 0),(ag1, 1),(af, 0)} al/ar - arm to the left/right
Z(p9)={(ar, 1),(ag1, 0)} l_error - error indicator
Z(p10)={(ar, 0),(ag1, 0),(ag0, 1)} l_start - initial st. indicator

sible behaviour model may be left undefined or may be
fixed at specific value. In our case signals ack, d05s,
d1s, d2s, d4s, d6s and si are set undefined, while start
and cycle are assumed to be 1. The initial position
of the devices in assumed back and left and gripper
released (s f = 0, sb = 1, sl = 1, sr = 0, sg = 0). The
initial state of all output signals is assumed to be 0.

For the given case the constructed IO-reachability
graph consists of 47 nodes and 72 transitions. It shows
the system operation is blocking after place p7 is
marked. This is because we used the front sensor of
the piston to indicate whether a workpiece was present
or not (Y (t6) = sl AND sb, Y (t9) = sl AND s f ).
In the same time the interlock specifications require
that the manipulator and the piston must not be in
the left/front position simultaneously. The supervisor
therefore blocks al (arm left) signal and since this is
the required action of p7, the operation is blocked.

The blocking situation is solved by replacing s f by si
and sb by NOT si in the related transition conditions
and moving action (a f ,0) from p8 to p7. A new
IO-reachability graph consists of 164 nodes and 312
transitions. It shows the operation is still blocking
when the place p6 is entered through t18 and t13.
The problem is again the potential collision of the
manipulator and the piston - the manipulator is in
left position and the forward movement of the piston
is blocked. The problem is solved by moving the
outgoing arc of t13 from p6 to p5 (dashed line in Fig. 5)
and adjustment of the place actions ((ag0,0) in p5).

A new analysis shows the operation is now non-
blocking. The corresponding IO-reachability graph
consists of 108 nodes and 191 transitions. The re-
quired changes of the transition conditions and place
actions are: Y (t6) = sl AND NOT si, Y (t9) = sl AND
si, Z(p5)= {(ar,1),(ag0,0)}, Z(p7)= {(al,1),(ar,0),
(ag0,0),(a f ,0)}, Z(p8) = {(al,0),(ag1,1)}. With
the resulting RTPN a code generator is started, which
automatically builds a SFC for the given case.

4. CONCLUSIONS

The presented approach enables a detailed analysis
of the potential blocking in the control logic that
is built on the basis of Petri net specifications. The
main advantage of the approach is that the relations
among input and output signals of the controller are
taken into account, which is not possible by classical
methods of the Petri net analysis. The approach also
enables a relatively high automation of the control
synthesis for the manufacturing systems. Once the
model of the plant and the specification models are
developed an appropriate computer tool may perform
all the necessary calculations and even generate the
control code. Such a prototype tool for automatic
code generation in a form of IEC 61131-3 compliant
function blocks has already been implemented. Only
a small amount of additional programming is then
needed to obtain an operating logic controller.

REFERENCES

Cassandras, C.G. and S. Lafortune (1999). Introduc-
tion to Discrete Event Systems. Kluwer Aca-
demic Publishers. Dordrecht.

Frey, G. and L. Litz (2000). Formal methods in plc-
programming. In: Proc. of the SMC’2000.

Murata, T. (1989). Petri nets: Properties, analysis and
applications. Proc. IEEE 77, 541–580.

Mušič, G. and D. Matko (2003). Petri net control
of systems under discrete-event supervision. In:
ECC’03 European Control Conference. Cam-
bridge, UK.

Mušič, G., B. Zupančič and D. Matko (2002). Model
based programmable control logic design. In:
Preprints of the 15th Triennial IFAC World
Congress. Barcelona, Spain.

Ramadge, P.J. and W.M. Wonham (1987). Supervisory
control of a class of discrete event processes.
SIAM J. Control and Optimization 25, 206–230.

Vaz, A.F. and W.M. Wonham (1986). On supervi-
sor reduction in discrete-event systems. Interna-
tional J. Control 44, 475–491.

Wonham, W.M. (2003). Notes on Control of Discrete
Event Systems: ECE 1636F/1637S 2003-2004.
Systems Control Group, Dept. of ECE, Univer-
sity of Toronto.

Zhou, M. and E. Twiss (1998). Design of industrial au-
tomated systems via relay ladder logic program-
ming and petri nets. IEEE Trans. on Systems,
Man, and Cybernetics - Part C 28, 137–150.


	Source: Preprints of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005


